

RESOURCES FOR "HSC-I CHEMISTRY" ZUEB EXAMINATIONS 2021

@copyright ZUEB

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from <u>www.zueb.pk</u> to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

2. Constructed Response Questions (CRQs)

HOW TO ATTEMPT CRQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

SECTION B (SHORT ANSWER QUESTIONS)

1. What are buffers? Write their applications?

@copyright ZUEB

S#	CRQ	ANSWER	CL	DL
	L	CHAPTER 01		<u> </u>
1.	Define the following?	Significant Figures: Significant figures are the reliable digits in a number or measurement which are known with certainty.		
		Error/Deviation: "The difference between the measured value and the actual value."		
		Atomic Mass: "The mass of one atom of the element compared with the mass of one atom of C ¹² " Atomic mass is a ratio therefore it has no unit. Generally atoms mass is expressed in ATOMIC MASS UNIT(a.m.u).		
		One atomic mass unit is equal to $1/12$ of the mass of a C^{12} atom. Molecular Weight:		
		It is the sum of the atomic masses of all the atoms present in a molecule. Empirical Formula:		
		"Empirical Formula is that formula which expresses the relative number of each kind of atoms present in the molecule of a compound" OR		
		"The formula of a compound which expresses the ratio in which atoms of different elements are combined in a molecule"		
		MoleIt is defined as atomic mass of an element, molecular mass of a compound or formula mass of a substance expressed in grams is called as mole.OR		
		A mole is the amount of pure substance containing the same number of chemical units as there are atoms in exactly 12 grams of carbon-12 (i.e., 6.023×10^{23}).		
		Stoichiometry (Calculation Based On Chemical Equations) The study of relationship between the amount of reactant and the products in chemical reactions as		

How to d	1 1	
empirica	ormula of is to be determined is given to us. Now we will use the	
a compo	1 1	
	Step I – Determination of the Elements	
	By performing test it is found that the compound contains	
	magnesium and oxygen elements.	
	Step II – Determination of the Masses	
	Masses of the elements are experimentally determined	
	which are given below.	
	Mass of $Mg = 2.4 \text{ gm}$	
	Mass of Oxygen = 1.6 gm	
	<u>Step III – Estimation of the Percentage</u>	
	The percentage of an element may be determined by using	
	the formula.	
	% of element = $\underline{\text{Mass of element}} \times 100$	
	Mass of compound	
	In the given compound two elements are present which are	
	magnesium and oxygen, therefore mass of compound is	
	equal to the sum of the mass of magnesium and mass of	
	oxygen. Mass of compound = $2.4 + 1.6 = 4.0$ gm	
	% Mg = <u>Mass of element</u> x 100	
	Mass of compound	
	$= 2.4 / 4.0 \times 100$	
	= 60%	
	$% O = Mass of element \times 100$	
	Mass of compound	
	$= 1.6 / 4.0 \times 100$	
	=40%	
	Step IV – Determination of Mole Fraction :	
	Mole composition of the elements is obtained by dividing	
	percentage of each element with its atomic mass.	
	Mole ratio of $Mg = Percentage of Mg$	
	Atomic Mass of Mg	
	= 60 / 24	
	= 2.5	
	Mole ratio of Mg = Percentage of Oxygen / Atomic Mass	
	of Oxygen	
	=40 / 16	
	= 2.5	
	Step V – Determination of Simplest Ratio	
	To obtain the simplest ratio of the atoms the quotients	
	obtained in the step IV are divided by the smallest	
	quotients.	
	Mg = 2.5 / 2.5 = 1	
	O = 2.5 / 2.5 = 1	
	Thus the empirical formula of the compound is MgO	

3.	Ethylene glycol is used as antifreeze. Combustion of 6.38gm of ethylene glycol gives 9.06 gm of CO2 and 5.58 gm of H2O. Ethylene	Data : Mass of sample = 6.38gm Mass of CO2 = 9.06gm Mass of H2O = 5.58gm Empirical formula =? Elements present = C,H,O Solution : Mass of Carbon = 1 mole mass of carbon x mass of CO2/1
	Glycol contains Carbon , Hydrogen and Oxygen find its empirical formula?	 mole mass of CO2 = 12x9.06/44 = 2.4709 gm. Mass of Hydrogen = 2 mole mass of Hydrogen x mass of H2O /1 mole mass of H2O = 2x 5.58 / 18 = 0.62gm. % of Carbon = Mass of C x100/Mass of Sample = 38.72% % of Hydrogen = Mass of H x100/Mass of Sample =9.717% % of Oxygen = 100 - (% of Carbon + % of Hydrogen) =51.56% Mole ratio of Carbon = % of C / At. Mass of C = 3.22 Mole ratio of Hydrogen = % of H / At. Mass of H = 9.71 Mole ratio of Oxygen = % of O/ At. Mass of O = 3.22 Simple ratio of Carbon = Mole ration of C / Least mole ratio = 1 Simple ratio of Hydrogen = Mole ration of H / Least mole ratio = 3 Simple ratio of Oxygen = Mole ration of H / Least mole ratio = 1 Empirical Formula = CH3O
4.	Calculate the mass of CO ₂ that can be obtained by heating 100 gm of limestone?	SolutionStep I – Write a Balanced Equation $CaCO_3 \rightarrow CaO + CO_2$ Step II – Write Down The Molecular Masses And MolesOf Reactant & Product $CaCO_3 \rightarrow CaO + CO_2$ Method I – MOLE METHODNumber of moles of 100 gm of CaCO3 = 100 / 100 = 1.0moleAccording to equation1 mole of CaCO3 gives 1 mole of CO21 mole of CaCO3 will give1mole of CO2Mass of CO2 = Moles x Molecular Mass= 1.0 x 44= 44 gmMethod II – FACTOR METHODFrom equation we may write as100 gm of CaCO3 gives 44 gm of CO21 gm of CaCO3 will give100 x 44 / 100 gm of CO2100 gm of CaCO3 will give100 x 44 / 100 gm of CO2= 44 gm of CO2.

5. Write differences between empirical and molecular formula?	VEF	R FORMULA
	Empirical formula is the simplest form of expressing the elemental composition of a compound.	Molecular formula is the actual representation of the elemental composition of the compound.
	The empirical formula is derived first from the weight percentages of the elements present in the compound.	The molecular formula is related to the total weight of the compound in question and often is derived after the obtaining the empirical formula.
	The empirical formula contains the most simplified ratio of the moles of elements in the compound.	The molecular formula needs to be a multiple of the empirical formula.
	The empirical formula is not often used in reaction schemes. ₽ediaa.com	The molecular formula is commonly used in reactions and other chemical recordings.

S#	CRQ	ANSWER	CL	DL
		CHAPTER 02	1	
6.	Write down the main postulates	KINETIC MOLECULAR THEORY OF GASES		
	of Kinetic	MAIN POSTULATES:		
	Molecular			
	Theory?	1) Size of Molecuke: A gas consists of very small		
		microscopic particles called 'molecules'. Depending upon the		
		nature of gas each gas molecule may consists of an atom or		
		group of atoms.		
		<u>2)</u> Intermolecular distances: The molecules are wide separated from each other as compared to their own dimensions. (The diameter of a molecule is about 3×10^{-10} meter.)		
		<u>3)Random Motion:</u> Gas molecules move in straight line in all possible directions (random movement) with various		
		speeds.		
		4) Elasticity : Gas molecules collide with each other and		
		with the walls of container. There collisions are perfectly		

		elastic in nature.
		5) Force of attraction or repulsion : Molecules of an ideal gas exert no force of attraction or repulsion on one another except during collision.
		<u>6) Volume of gas :</u> The individual volume of a gas molecule is negligible as compare to the total volume of the gas
		7) Kinetic Energy : The average kinetic energy of gas molecules is directly proportional to absolute temperature.(At a given temperature, the molecules of all gases have the same kinetic energy).
7.	Describe Boyle's	Boyle's law
	law, and also deduce its mathematical expression?	Introduction Boyle's law is a quantitative relationship between volume and pressure of a gas at constant temperature. Statement "The volume of a given mass of a gas is inversely
		proportional to pressure if temperature remains constant ". Mathematical representation of Boyle's law According to Boyle's law
		V α 1/P V= (constant)(1/P) PV=constant
		At P_1 pressure $P_1V_1 = \text{constant}(1)$ At P_2 pressure
		$P_2V_2 = constant$ (2) Comparing (1) &(2)
		$\mathbf{P}_1\mathbf{V}_1 = \mathbf{P}_2\mathbf{V}_2$
		"At constant temperature, the product of pressure and volume of a gas remains constant " Graphical representation of Boyle's law Graph between P & V at constant temperature is a smooth curve known as "parabola"
		v
		P Graph between 1/P & V at constant temperature is a straight line.

8.	DescribeCharle's law, and also deduce its mathematical expression?	v According to kinetic molecular theory of gases the pressure exerted by a gas is due to the collisions of the molecules with the walls of the container. If the volume of a gas is reduced at constant temperature, the average velocity of the gas molecules remains constant so they collide more frequently wit the walls which causes higher pressure. Charles law Introduction It is quantitative relation between volume and absolute temperature of a gas at constant pressure. Bis directly proportional to absolute temperature" Second statement "The volume of a given mass of a gas increases or decreases by 1/273 times of it's original volume at 0 °C for every degree fall or rise of temperature at given pressure." Mathematical representation Let the volume of a gas at T Kelvin is V Then according to Charles's law V á T V = (constant) T V/T = constant At Initial State V ₁ /T ₁ = k(1)	
		$V_1/T_1 = k$ (1) At Final State $V_2/T_2 = k$ (2) Thus $V_1/T_1 = V_2/T_2$ By using above equation ,Charles's law can also be stated as:	

		"The ratio of volume to absolute temperature of a gas at given pressure is always constant" Graph between Volume and absolute temperature of a gas at constant pressure is a "straight line" According to kinetic molecular theory the average kinetic energy of gas molecules is directly proportional to its absolute temperature so if the temperature of the gas is increased the average kinetic energy of the gas molecules is also increased due to which the sample of the gas expanded to
		keep the pressure constant. It is accordance with the law. Absolute scale of temperature or absolute zero If the graph between V and T is extra plotted, it intersects T-axis at -273.16 ⁰ C At -273.16 ⁰ C volume of any gas theoretically becomes zero as indicated by the graph.
		But practically -273.16 °C T volume of a gas can never become zero. Actually no gas can achieve the lowest possible temperature and before -273.16 °C all gases are condensed to liquid. This temperature is referred to as absolute scale or absolute zero. At -273.16 °C all molecular motions are ceased.
9.	What is Avogadro's Law explain, also deduce its mathematical expression?	Avogadro's lawIntroductionAvogadro's law (sometimes referred to as Avogadro's hypothesis or Avogadro's principle) is a gas law named after Amedeo AvogadroStatement"Equal volumes of ideal or perfect gases, at the same temperature and pressure, contain the same number of molecules."
		As an example, equal volumes of molecular hydrogen and nitrogen would contain the same number of molecules, as long as they are at the same temperature and pressure and observe ideal or perfect gas behavior <u>Mathematical representation</u> The law can be stated mathematically as: $\frac{V}{n} = k$
		Where:V is the volume of the gas.n is the amount of substance of the gas.k is a proportionality constant.

		One mole of an ideal gas occupies 22.414 litres (dm ³) at STP, and occupies 24.45 litres at SATP (Standard Ambient Temperature and Pressure = 273K and 1 atm). This volume is often referred to as the molar volume of an ideal gas. Real gases may deviate from this value.	
10.	Derive General gas equation, and also find value of "R" in	GENERAL GAS EQUATION AND EQUATION OFSTATE OF A GASAccording to Boyle's Law :Volume of a given mass of a gas is inversely proportional to	
	1. In atm.dm3/mole.k 2.In J/mole.k	pressure if temperature remains constant . V α 1/P(1)	
		According to Charles's law: Volume of a given mass of a gas is directly proportional to absolute temperature if pressure remains constant. V α T(2)	
		According to Avogadro's law: Volume of a gas is directly proportional to no of moles. V α n(3)	
		Combining 1,2,and 3 $V \alpha T$. 1/P. n V = (constant) nT/P PV/nT = constant	
		Here constant is R PV/nT = R Or	
		PV= n RT This is the equation of state of a gas (Ideal Gas Equation) R= Universal gas constant	
		Value of R is equal to 0.0821.atm. dm ³ /mole.k (R has different values in different systems of unit) ANOTHER FORM:	
		As $PV/nT = constant$ For initial conditions: When temperature is T_1 and pressure is P_1 :	
		$P_1V_1/T_1 = \text{constant}$ (a)	
		Similarly for final conditions: $P_2V_2/T_2 = \text{constant}$ (b) From equation (a) & (b) $P_1V_1/T_1 = P_2V_2/T_2$	
		This is another form of ideal gas equation in terms of P, V & R	

11.	Write difference	Ideal gases	Real Gases
	between real and	Ideal gases obey all gas laws	Real gases obey gas laws
	ideal gas?	under all conditions of	at low pressures and high
		temperature and pressure.	temperature.
		The volume occupied by the	The volume occupied by th
		molecules is negligible as	molecules is not negligible
		compared to the total volume	compared to the total volu
		occupied by the gas.	the gas.
		The force of attraction among	The force of attraction are
		the molecules are negligible.	negligible at all temperatu
			and pressures.
		Obeys ideal gas equation	Obeys Van der Waals equa
		PV=nRT	
			$\left(P + \frac{an^2}{V^2}\right) (V - nb) = nRT$
12.	Write a note on	Viscosity	
14.	Viscosity?	The internal resistance in the flo	ow of a liquid is
	· 100001090	calledviscosity.	
		Liquids have the ability to flow, b	ut different liquids have
		different rates of flow. Some liqui	•
		flow slowly and are called viscous	-
		gasoline etc. which flow quickly a	are called less viscous.
		Explanation The viscosity of liquid can be und	erstood by considering a
		liquid in a tube, a liquid in a tube	
		a series of molecular layer. The la	-
		with the walls of the tube remains	
		the center of the tube has highest	
		Each layer exerts a drag on the ne	xt layer and causes
		resistance to flow. Factors on Which Viscosity Dep	onda
		1. Size of Molecules	
		The viscosity of a liquid depends	upon the size of its
		molecules. If the size of the molec	
		of the liquid is high.	
		2. Shape of Molecules	
		Shape of the molecules affects the the molecules are spherical they c	
		shapes of the molecules are irregu	
		then the molecules will move slow	<u> </u>
		high.	
		3. Intermolecular Attraction	
		If the force of attraction between t	-
		greater the viscosity of the liquid	is also greater.
		4. Temperature	th the increase of
		Viscosity of a liquid decreases with temperature.	ui uie increase oi
		Units of Viscosity	
		Viscosity of a liquid is measured i	in poise, centipoise or
		millipoise& S.I unit. is N.S/m ²	
		$1 \text{ poise} = 1 \text{ N.s.m}^{-2}$	

		1 centipoise = 10^{-2} N.s.m ⁻²	
		r centipoise – 10 A.s.m	
13.	Write a note on	Surface Tension	
	Surface tension?	Definition	
		The force acting per unit length on the surface of a liquid	
		at right angle direction is called surface tension.	
		Surface tension = force/length	
		$\gamma = F/L$	
		2 nd Definition	
		"Energy per unit area on the surface of a liquid is called SURFACE TENSION"	
		γ = energy /area	
		Explanation	
		Consider a liquid is present in a beaker.	
		The molecules inside the liquid are surrounded by the other molecules of the	
		liquid So the force of attraction on a	
		molecule is balanced from all direction.	
		But the force of attraction acting on the	
		molecules of the surface from the lower layer molecules is	
		not balanced.	
		The molecules lying on the surface are attracted by the	
		molecules present below the surface Due to this downward	
		pull the surface of the liquid behave as a membrane which tends to contract to a smaller area and causes a tension on the	
		surface of the liquid known as surface tension.	
		surrace of the require mic with as surrace tension.	
		Factors on Which Surface Tension Depends	
		1. Molecular Structure of the Liquid	
		If the force of attraction between the molecules is greater, the	
		surface tension of the liquid is also greater. Those liquids in	
		which hydrogen bond formation take place will have more	
		surface tension.	
		2. Temperature Surface tension of a liquid is inversely propertional to the	
		Surface tension of a liquid is inversely proportional to the temperature.	
		3. Hydrogen bonding	
		Liquids that have H-bond such as water, have high values of	
		surface tension.	
		4. Pressure	
		Increase of pressure on the surface of a liquid increases the	
		surface tension. Such effects are not large.	
		Units	
		Unit of surface tension	
		· N/m (in S.I system)	
		· Dyne/cm (in C.G.S system)	

		· Joule/m ² (in S.I system)	
		· Erg/cm ² (in C.G.S system)	
14.		Scientific Reasons	
	Steam produces		
	severe burns,	Both steam and boiling water have the same temperature i.e.	
	then boiling	100 °C. But heat content of steam is greater than the boiling	
	water, although	water because latent heat of steam is 2.26 x 105 J/kg. That's	
	both have same	why steam produces severe burn as compared to boiling	
	temperature?	water.	
15.	Evaporation	Temperature is the measurement of average kinetic energy of	
13.	causes cooling?	molecules. As liquid evaporates high kinetic energy	
	causes coomig.	molecules escape from the liquid and lowers the average	
		kinetic energy molecules remain in the liquid. Due to this	
		reason temperature falls down.	
16.	In mountain	Boiling point of a liquid depends on the outer atmospheric	
	areas food takes	pressure. At normal atmospheric pressure boiling point of	
	longer time to	water is $100 {}^{\circ}$ C. on mountain areas such as Quetta and Swat,	
	cook?	atmospheric pressure is below 760 torr. Due to this reason	
		B.P of water decreases and food takes longer time to cook.	
17.	Glycerin distilled	At 760 torr, B.P of glycerin is 290 °C but at 290 °C	
	at 290 °C but it	temperature glycerine evaporates and it became difficult to	
	decompose at	distill it. In order to overcome this difficulty it is distilled at	
	this temperature,	50 torr . At 50 torrit's B.P decreases to 210 °C. At 210 °C it	
	how would you	does not decompose and distilled easily.	
	distilled it?		
18.	Evaporation of a	Rate of evaporation increases with the increase in	
	liquid is	temperature because on heating kinetic energy of molecules	
	accelerated on	becomes high enough to overcome intermolecular forces of	
	heating?	attraction. Thus number of molecules leaving the liquid	
		surface is increased. So the rate of evaporation increases on	
4.0		heating.	
19.	Falling drop of	Falling drop of a liquid is always spherical in shape due to surface tension. The inward forces on the surface molecules	
	liquid is		
	spherical?	of the liquid droplet tend to cause the surface to volume ratio as small as possible. Since surface to volume ratio is	
		minimum for the spherical shape that's why falling drop of a	
		liquid is spherical.	
20.	Under similar	Surface tension depends upon the strength of intermolecular	
	conditions	forces of attraction. Water has higher surface tension due to	
	surface tension	polar nature of its molecules. In water there exist hydrogen	
	of water is	bond as compared to ether, which is non-polar and has no	
	higher than the	hydrogen bond. We know that hydrogen bond increases	
	surface tension	intermolecular attraction. Consequently water has high	
	of ether?	surface tension.	

21.	What is Solid state? Describe its properties?	 Solid State It is a state of matter which posses both definite shape and definite volume. In solids the particles are very close to each and tightly packed with a greater force of attraction. Properties of Solids 1. Diffusibility Diffusion also occurs in solids but its rate is very slow. If a polished piece of zinc is clamped with a piece of copper for a long time. After few years we will see that some particles of zinc are penetrated into copper and some particles of copper are penetrated into zinc. It shows that the diffusion in solids is possible but it occurs with a slow rate. 2. Compressibility In solids the molecules are close to each other so it is not easy to compress a solid. In other words we can say that the effect of pressure on solids is negligible. 3. Sublimation It is a property of some solids that on heating these solids are directly converted into vapours without liquification. This property of solids is known as sublimation. 4. Melting When solids are heated, they are changed into liquids and the property is called melting of the solids. 5. Deformity Solids may be deformed by high pressure. When a high pressure is applied on solids due to which some particles are dislocated the force of attraction is so strong that the rearranged atoms are held equally well with their new neighbours and hence the solid is deformed.	
22.	What are the types of Solids? And also distinguish between them?	Classification of SolidsSolids are classified into two main classes.1. Crystalline2. Amorphous1. Crystalline SolidsIn a solid if the atoms are attached with each other with a definite arrangement and it also possesses a definite geometrical shape. This type of solid is called crystalline solid.e.g. NaCl, NiSO4 are crystalline solids.2. Amorphous SolidsIn these solids there is no definite arrangement of the particles so they do not have a definite shape. The particles of such solids have a random three dimensional arrangement.Examples of amorphous solids are glass, rubber, plastic etc.Difference between Amprphous Solids and Crystalline SolidsThe properties of crystalline and amorphous solids are quite different from each other. These differences in properties are given below:	

Property	Amorphous Solids	Crystalline Solids
Geometry	In amorphous solids particles are present without any definite arrangement so they do not have definite shape.	In crystalline solids particles are arranged in a definite order due to which it possesses a definite structure.
Melting Point	Amorphous solids melts over a wide range of temperature.	Crystalline solids have sharp melting point due to uniform arrangement.
Cleavage and Cleavage Plane	Amorphous solids do not break up into smaller pieces with an identical shape.	When a big crystal is broken down into smaller pieces the shape of the smaller crystals is identical with the bigger crystal. This property of crystalline solids is called cleavage and the plane from where a big crystal is broken is called cleavage plane
Anisotropy & Isotropy	In amorphous solids the physical properties are same in all directions. This property of solids is called isotropy.	It is a property of crystalline solid that they show different physical properties in different direction. For example graphite can conduct electric current only through the plane which is parallel to its layers. This property is called anisotropy.
Symmetry in Structure	Amorphous solids are not symmetric	Crystalline solids are symmetric in their structure when they are rotated about an axis, their appearance remains same so they are symmetric in structure

23. Describe various	
types of Crystals and also write	
	1. Atomic crystals
their	2. Ionic crystals
characteristic	3. Covalent crystals
properties?	4. Molecular crystal
	<u>1. Atomic Crystals</u> Metals are composed of atoms. These atoms are combined with each other by metallic bond and the valency electrons in metals can move freely throughout the crystal lattice. This type of solid is called atomic crystal.
	 Properties The properties of atomic crystals are 1. High melting point. 2. Electrical and thermal conductivity. 3. These are converted into sheets so these are malleable. 4. These are used as wire so these are ductile.
	<u>2. Ionic Crystals</u> Those solids which consists of negativity and positively charged ions held together by strong electrostatic force of attraction are called ionic crystals.
	 Properties Ionic crystalline solids possess the following properties. 1. The melting and boiling point of ionic crystals is high. 2. They conduct electricity in molten state. 3. Ionic crystals are very hard. 4. Indefinite growth of crystals is also a property of ionic crystals.
	3. Covalent Crystals In covalent solids, the atoms or molecules are attached with each other by sharing of electrons. Such type of solids are called covalent solids e.g. diamond is a covalent solid in which carbon atoms are attached with each other by covalent bond. The other examples of covalent crystals are sulphur, graphite etc.
	 Properties Covalent crystals possesses the following properties. 1. High melting point. 2. High refractive index. 3. Low density.

Structure of Graphite

Structure of Diamond

4. Molecular Crystals Those solid in which molecules are held together due to intermolecular forces (Vander Wall forces) to form a crystal lattice are called molecular crystals e.g. iodine and solid CO₂ are molecular crystals.

Properties

The general properties of molecular crystals are as follows. 1. Low melting and boiling point. 2. Non - conductor of heat and electricity.

Summery of Crystalline solids

Types of Solids	Constituent Particles	Nature of forces	Examples
Ionic	onic Positive and negative ions		KCl, BaSO4 KNO3, LF
Molecular	Molecules	(I) Vander Waal's forces (ii) Dipole interaction (iii) Hydrogen bonding	I ₂ , CO ₂ (solid) HCl Ice
Covalent	Atom	Covalent bonds	Diamond, silicon
Metallic	Positive metal ions (kernels) and mobile electrons	Metallic bonds	All metals and some alloys

4. Define the	Isomorphism
following with	When two different substance have same crystalline structure,
example (if	they are said to be isomorphous and the phenomenon is called
possible)?	isomorphism.
	Examples:
	1) $Na_2SO_4 \& Ag_2SO_4$ both exist in Hexagonal crystalline
	form.
	2) ZnSO ₄ & NiSO ₄ both exist in Orthorhombic
	3) CaCO ₃ & NaNO ₃ both exist in Trigonal
	Properties of Isomorphic Substances
	1) Isomorphic substances have same atomic ratio
	2) Empirical formula of isomorphic substances is same
	For example
	CaCO ₃ NaNO ₃ &NaFMgO
	1:1:3 1:1:3 1:1 1:1
	3) They have different chemical & physical properties.
	4) When their solutions are mixed, they form mixed type of
	crystals.
	5) They show property over growth.
	Polymorphism
	If a substance exist in more than one crystalline form it is
	called polymorphous and the phenomenon is known as
	polymorphism. e.g. sulphur exist in rhombic and monoclinic
	form similarly CaCO ₃ exist in trigonal and ortho-
	-rhombic form.
	UNIT CELL
	Crystals made of very small basic patterns or arrangements of
	atoms or molecules or ions .These basic patterns are joined
	together to form a crystal. Theses basic patterns are known as
	"UNIT CELL". All the unit cell of a crystal are identical.
	Characteristics of unit cell
	1.A unit cell has a definite shape.
	2.Length of edges of a unit cell are
	definite.
	3.Angle between the edges are definite.
	4.All unit cells of a substance always
	contain equal numbers of atoms or molecules or ions
	Crystal Lattice
	In crystalline solids atoms, ions or molecules are arranged in
	a definite order and form a three dimensional array of
	particles which is known as crystal lattice.

S#	CRQ	ANSWER	C L	D L
	1	CHAPTER 03		
25.	How negative charge particle was discovered through discharge tube experiment?	Introduction The first of the subatomic particles to be discovered was electron. The knowledge about the electron was derived as a result of the study of the electric discharge in the discharge tube by J.J. Thomson in 1896. This work was later extended by W. Crooke Working of Discharge Tube & Observatio ns		
		When a very high voltage about 10,000 volts is applied between the two electrodes, no electric discharge occurs until the part of the air has been pumped out of the tube. When the pressure of the gas inside the tube is less than 1 mm, a dark space appears near the cathode and thread like lines are observed in the rest of 0.01 mm Hg it fills the whole tube. The electric discharge passes between the electrodes and the residual gas in the tube begins to glow. These rays which proceed from the cathode and move away from it at right angle in straight lines are called cathode rays CONCLUSION: Different scientist tried different discharge tubes with different electrodes and different gases but results of all the experiment gave same value for charge to mass ratio. This shows that there is something common in all materials. It was concluded that the negatively charge particles electrons and the positively charge particles protons are the fundamental particle of every atom.		

26.	Write properties	Properties of Cathode Rays	
	of Cathode and	• They travel in straight lines away from the cathode	
	Canal rays?	and produce shadow of the object placed in their path.	
		• The rays carry a negative charge.	
		• These rays can also be easily deflected by an	
		electrostatic field.	
		• The rays can exert mechanical pressure showing that	
		these consist of material particle which are moving with	
		kinetic energy.	
		• The produce fluorescence when they strike the glass	
		wall of the discharge tube.	
		• Cathode rays produce x-rays when they strike a	
		metallic plate.	
		• These rays consists of material particle whose e/m	
		resembles with electron.	
		• These rays emerge normally from the cathode and can	
		be focused by using a concave cathode.	
		Properties of Canal Rays	
		• These rays travel in a straight line in a direction	
		opposite to the cathode.	
		• These are deflected by electric as well as magnetic	
		field in the way indicating that they are positively charged.	
		• The charge to mass ratio e/m of positive particles	
		varies with the nature of the gas placed in the discharge tube.	
		• Positive rays are produced from the ionization of gas	
		and not from anode electrode.	
		Positive rays are deflected in electric field. This deflection	
		shows that these are positively charged so these are named as	
		protons.	
27.	What is	RADIOACTIVITY:	
21.	Radioactivity?	All the elements having atomic number greater than 82	
	Also write	emit invisible radiation all the time. The phenomenon of	
	properties of	emission of these powerful rays is called "Natural	
	different type of	Radioactivity" or simply Radioactivity and the element	
	radiations	that emits such rays is called "Radio Active Elements".	
	emitted out	that childs such rays is cance. Radio fictive Elements.	
	radioactive	TYPES OF RADIO ACTIVE RAYS	
	source?	There are three types of radioactive rays:	
		• a-Rays	
		 β- Rays 	
		• γ - Rays	
		Properties of a- RAYS	
		1. These rays consists of positively charged particles.	
		2. These particles are fast moving helium nuclei.	
		3. The velocity of α -particles is approximately equal to 1/10th	
		of the velocity of light.	
		4. Being relatively large in size, the penetrating power of α -	
		rays is very low.	
		5. They ionize air and their ionization power is high.	

		E = h v Where v is the frequency of the here v is the frequency of the here v is the frequency of the here v is the Planck's constant. The ward of this theory gained or lost is quantized v change occurs in small pack change occurs in small pack packets, hv, 2 hv, 3 hv and CONTINEOUS SPECTRUM No line of demarcation	The emitted radiation and the emitted radiation and value of $h = 6.62 \times 10^{-27}$ erg. sec. This that the amount of energy which means that energy kets or multiple of those	
28.	What is Planks Quantum theory? Also write differences between continuous and line spectrum?	power of penetration. Planck's Quantum Theory In 1900, Max Planck studied hot body radiations at differe him, When atoms or molecules ab do so in separate units of way	gases. material nature they have great the spectral lines obtained from nt temperatures. According to sorb or emit radiant energy, they ves called Quanta or Photons. d from excited atoms consists of	
		 The velocity of β-particles velocity of light. The penetrating power of prays. These rays ionizes gases to Properties of γ- RAYS Gamma rays do not consist electromagnetic radiations. They carry no charge so the or magnetic field. Their speed is equal to that 	t of particles. These are ney are not deflected by electric t of light.	

31.	What is	Quantum numbers	
		$h/2\pi$ ". These stationary states correspond to energy levels in the atom.	
		momentum of the electrons would be an integral multiple of	
		be stated as "Only those orbits were possible in which the angular	
		Thus Bohr's first condition defining the stationary states could	
		Here mvr becomes the angular momentum of the electron.	
		It can be written as $mvr = nh / 2\pi$	
		angular momentum is an integral multiple of $h/2\pi$	
		the ordinary laws of mechanics and electrostatic provided its	
		4. The motion of the electron in these states is governed by	
		3. In any of these states the electrons move in a circular path about the nucleus.	
		the initial and final states.	
		radiations whose energy equals the energy difference between	
		states to another of lower energy with the emission of	
		2. An electron may pass from one of these non-radiating	
		absorption of energy.	
		in which an electron can reside without emission or	
		1. An atom has a number of stable orbits or stationary states	
		Some of the postulates of Bohr's theory are given below.	
		the appearance of line spectra.	
	model?	first to present a simple model of the atom which explained	
	of Bohr's Atomic	atom and appearance of the line spectra. Bohr in 1913 was the	
30.	Write postulates	Rutherford's model of atom fails to explain the stability of	
		$\Delta \mathbf{P} \cdot \Delta \mathbf{x} \geq \mathbf{h}/2\pi$	
		the order of an amount involving h, which is Planck's constant.	
		in momentum is in the order of an amount involving h, which is Planak's	
		The product of the uncertainty in position and the uncertainty	
		According to Heisenberg's uncertainty principle:	
		ΔP = uncertainty in momentum	
		$\Delta x =$ uncertainty in position	
		Let	
		MATHEMATICAL REPRESENTATION	
		quantity will become impossible.	
		If one quantity is known then the determination of the other	
		momentum of an electron simultaneously.	
		It is impossible to determine both position and	
		According to Heisenberg's uncertainty principle:	
		STATEMENT	
		'Heisenberg's uncertainty principle'.	
		simultaneously. This limitation was expressed by a German physicist Werner Heisenberg in 1927 and known as	
		position and velocity of microscopic particle can be known	
		fundamental limitation to the accuracy with which the	
		found that however refined our instruments there is a	
	formula?	description. But in microscopic world it is not possible. It is	
	mathematical	measured exactly i.e. no uncertainties are involved in its	

		It describe si 3-Magnetic	-		r (m)		
		It describe d	ivision of	orbital in	to sub or	bital	
		4- Spin Qua It describe s)		
32.	State Pauli's Exclusion principle?	four quantu Pauli's exclu have three sa number mus In other wor as: ''An orbital i.e. maximu accommoda	p Pauli's e n no two e im numbe ision princ ame quant t be differ ds Pauli's cannot a m numbe ite is two.	xclusion p electrons ers.'' ciple indic cum numb ent. exclusion ccommo er of elect	principle can have cates that pers but the principl date more	two electrons may the fourth quantum e can also be stated re than two electrons at an orbital can	
33.	Write down the electronic configuration?	EXPLANA EXAMPLE Their set of	: We know			ontains two electrons.	
	comiguration	Electron	<u>n</u>	1	m	S	
		e ₁	1	0	0	+1/2	
		0.	1	0	0	1/2	
		e ₂	1	0	0	-1/2	
		_	the fourt	h quantu	m numb	-1/2 er i.e. spin quantum	

S #	CRQ	ANSWER	CL	DL
		CHAPTER 04		

34.	What is dipole	Dipole Moment
	moment,	
	discuss dipole	The product of the charge and the distance present in a polar
	moment of	molecules is called dipole moment and represented by μ .
	diatomic and	
	polyatomic	OR
	molecules?	
		The extent of tendency of a molecule to be oriented under the influence of an electric field is called dipole moment.
		Mathematical Representation of Dipole Moment
		Suppose the charge present on a polar molecule is denoted by e and
		the separation between the two oppositely charged poles of the
		molecules is d, then the product of these two may be written as
		$\mu = e x d$
		Where μ is dipole moment.
		Dipole Moment in Diatomic Molecules
		The diatomic molecules which are made up of similar atoms will be
		non-polar and their dipole moment is zero but the diatomic
		molecules made up of two different atoms e.g. HCl or Hl are polar and have some dipole moment. The value of the dipole moment
		and have some dipole moment. The value of the dipole moment depends upon the difference of electronegativities of the two
		bonded atom. If the difference of electronegativity between the
		atoms is greater, the polarity and also the dipole moment of the
		molecule is greater e.g.
		The dipole moment of $HCl = 1.03$ debye
		Whereas dipole moment of $HF = 1.90$ debye
		Dipole Moment of Poly Atomic Molecules
		In poly atomic molecules, the dipole moment of molecules depends
		upon the polarity of the bond as well as the geometry of the
		molecule.
		Factors effecting Dipole Moment
		Greater the polarity(Ionic Character), greater will be the dipole
		moment.
		It is also depend upon no. of lone pair of electron present around
		central atom of molecule.
		It also depend upon the geometry of the molecule.
35.	What is bond	Bond Energy
	energy? Also	The amount of energy required to break a bond between two
	describe	atoms in a diatomic molecule is known as Bond Energy.
	factors	OB
	effecting bond	OR
	energy?	The energy veloced in forming a hand from the free stores is
		The energy released in forming a bond from the free atoms is also known as Bond Energy.
		It is expressed in kilo Joules per mole or k Cal /mole.
		Examples

		i). The bond energy for hydrogen molecule is
		H - H _(g) \rightarrow 2H _(g) Δ H = 435 kJ/mole
		OR
		$H_{(g)} + H_{(g)} \rightarrow H - H \dots \Delta H = -435$ kJ/mole
		It can be observed from this example that the breaking of bond is endothermic whereas the formation of the bond is exothermic.
		ii. The bond energy for oxygen molecule is
		$O = O_{(g)} \rightarrow 2 O_{(g)} \dots \Delta H = 498 \text{ kJ/mole}$
		$\begin{array}{c} OR\\ O_{(g)} + O_{(g)} \rightarrow O = O \dots \Delta H = -498\\ kJ/mole \end{array}$
		Bond energy of a molecule also measure the strength of the bond. Generally bond energies of polar bond are greater than pure covalent bond.
		E.g. $\Delta H = 244 \text{ kJ/mole}$
		$H - Cl \rightarrow H^+ + Cl^- \dots \Delta H = 431 \text{ kJ/mole}$
		The value of bond energy also depend upon bond length e.g , triple bonds are usually shorter than the double bond therefore the bond energy for triple bond is greater than double bond.
		Factors effecting bond energy
		 Shorter the bond length greater will be the bond energy. Smaller the size of bonded atoms greater would be the bond energy.
		 As the multiple bonds increases, the bond length decreases therefore bond energy will be increases. Greater the ionic character in a molecule, greater would be the bond energy
36.	What is hybridization? Describe sp3 hybridization with example	HybridizationIntroductionThe structures of different molecules can be explained on the basis of hybridization. For e.g., in case of carbon, the ground state electronic configuration is $1s^2 2s^2 2p_x^1 2p_y^1$.
		To explain the tetravalency of carbon, it was proposed that one of the electrons from 2s filled orbital is promoted to the 2p empty orbital $(2p_z)$, which is in a higher energy state. Thus, four half-filled

			<u> </u>
38.	Write	ELECTRON PAIR REPULSION THEORY	
	postulates of	Following are the main points of electron pair repulsion theory:	
	VSEPR	1. There are two types of electron pairs surrounding the central	
	theory	atom. Bond pair.& Lone pair.	
		2. These bond pairs are known as active set of electrons.	
		3. These electron pairs (bond pairs or lone pairs) repel each	
		other.	
		4. Due to repulsion, electron pairs of central atom try to be as	
		far as possible. Hence, they arrange themselves in space in such a manner that the force of repulsion between them is	
		minimized.	
		5. The force of repulsion between lone pairs and bond pairs is	
		not the same. The order of repulsion is as follows:	
		lone pair-lone pair>lone pair-bond pair>bond pair-bond pair.	
		6. Pi-electron pairs are not considered as an active set of electrons.	
		7. The shape of molecule depends upon total number of	
		electron pairs surrounding the central atom.	
		For example:	
		• If central atom has two electron pairs, geometry of molecule will be linear with bond angles of 180°.	
		 If central atom has three electron pairs, geometry of 	
		molecule will be trigonal with bond angles of 120°.	
		If central atom has four electron pairs, geometry of molecule will	
		be tetrahedral with bond angles of 109.5°	
20	Dere de et de e		
39.	Predict the shape of	Prediction of molecular geometry on the basis of VSEPR	
	molecules	reaction of molecular geometry on the busis of visiting	
	with respect to	<u>1-Molecules with two bond pairs</u>	
	EPR theory?	In a beryllium chloride molecule represented by the type AB ₂ , the	
		central atom A has two electron pairs located on either side of it, the	
		molecule AB_2 takes a linear geometry.	
		180 ⁰ B: A : B B → A → B : Cl · [×] Be [×] · Cl Cl → Be → Cl	
		Beryllium chloride is a linear molecule	
		2-Molecules with three bond pairs	
		In a molecule having three bond pairs of electrons around its central atom, the electron pairs form an acquilatoral triangular arrangement	
		atom, the electron pairs form an equilateral triangular arrangement around the central atom. These molecules have trigonal planar (or	
		triangularplanar) shape and the three bond pairs are at 120°C with	
		respect of each other.	
		In a molecule of the type AB ₃ , the three bond pairs of electrons are	

located around A in a triangular arrangement and the molecule AB ₃ , has a triangular planar geometry. Some molecules that show triangular planar geometry are BCl ₃ , BF ₃ , etc.
B = B = F = B = F borontrifluoride is a trigonal planar molecule

S #	CRQ	ANSWER	CL	DL
	1	CHAPTER 05		
40.	Describe thermochemical reactions with graphical representation?	THERMOCHEMICAL REACTIONS: All those chemical reactions which accompanied with mass change as well as energy change are known as thermochemical reactions. TYPES OF THERMO CHEMICAL DEACTIONS:		
		TYPES OF THERMO-CHEMICAL REACTIONS: There are two types of thermo chemical reactions: ENDOTHERMIC REACTIONS EXOTHERMIC REACTIONS		
		ENDOTHERMIC REACTIONS: "All those chemical reaction in which heat is absorbed in going from reactancts to product are known as "Endothermic reactions."		
		These reactions can not proceed without addition of heat. For example: $2KClO_3 + Heat \rightarrow 2KCl + 3O_2$ $CaCO_3 + Heat \rightarrow CaO + CO_2$ GRAPHICAL REPRESENTATION ENDOTHERMIC REACTION		
		(T) Control (T) Control (T) Control (T) Control (T) Control (T) Control (T) Heat is absorbed △ H is positive Reactants C H		
		Reaction Pathway EXOTHERMIC REACTION All those chemical in which heat is realeased in going from reactant to product are known as exothermic reactions. For example:		
		For example: $3H_2 + N_2 \rightarrow 2NH_3 + Heat$ $2SO_2 + O2 \rightarrow 2SO_3 + Heat$		

	GRAPHICAL REPRESENTATION ENDOTHERMIC REACTION	
41. Define the following?	DEFINITIONS: SYSTEM: 'A specified part of the universe which is under investigation is called the system'. The system is separated from the rest of the universe by a definite (real or imaginary) boundary. OR A thermodynamic system is that part of universe which is under thermodynamic study. FOR EXAMPLE: 1. A BALLOON FILLED WITH AIR 2. A BEAKER FILLED WITH WATER TYPES OF SYSTEM: There are three types of thermodynamic systems. 1. Open system 2. Closed system. 3. Isolated system. OPEN SYSTEM A system, which can exchange matter as well as energy with the surroundings is called an open system CLOSED SYSTEM A system, which can exchange energy but not mass with the surroundings is called a closed system. ISOLATED SYSTEM A system, which can neither exchange mass nor energy with surroundings, is called an isolated system. Homogeneous system A system is called homogeneous if physical properties and chemical composition are identical throughout the system. A pure gas or consistent mixture of gases e.g., an oxygen cylinder, or a pure liquid or solid in a container are examples of homogeneous systems. Hetrogeneous systems. Hetrogeneous system A system is said to be heterogeneous if it consists of parts separated by definite bo	

		this system
42.	State First law of Thermodynamics; derive its formula in terms of PV – work done?	FIRST LAW OF THERMODYNAMICS STATEMENT "Energy can neither be created nor destroyed but it can be changed from one form of energy to another form of energy" In other words "During any process total energy of system remains constant" OR "During any change the total energy of system and its surrounding remains constant .
		MATHEMATICAL REPRESENTATIONConsider a thermodynamic system initially have internal energy E_1 absorbs ΔQ amount of heat from its surroundings and performs ΔW amount of work and at the same time its internal energy increases to E_2 Then according to the first law of thermodynamics:Heat supplied = increase in internal energy + work done
		$Q = \Delta E + W$ PRESSURE-VOLUME WORK Consider a cylinder fitted with a frictionless and weightless non-conducting piston of area of cross section "A" . An ideal gas is enclosed in the cylinder. Let the volume of gas at initial state is "V ₁ ". An external pressure "P" is exerted on the piston. If we supply "q" amount of heat to the system then it will increase its internal energy by ΔE . "After a certain limit gas exerts pressure on the piston . If piston is free to move, it will be displaced by "h" and the volume of system increases from V ₁ to V ₂ .
		Gas Cylinder
		We know that pressure is the force per unit area i.e. P = F/A OR F = PA (i)
		We also know that the work done by the gas on the piston is

given by:
$\Delta W = F d$
Where $d = displacement of piston = h$
Putting the value of F and , we get
$\Delta W = (PA) h$
OR
$\Delta W = P (Ah)$
But $Ah = change$ or increase in volume = ΔV
Hence
$\Delta W = P \Delta V$
Let us consider a cylinder fitted with a friction less
position an ideal gas is enclosed in the cylinder. Then first
law of thermodynamics can be written as
$\mathbf{Q} = \Delta \mathbf{E} + \mathbf{P} \Delta \mathbf{V}$

S #	CRQ	ANSWER	CL	DL
	1	CHAPTER 06	1	I
43.	What are Reversible reactions and Irreversible reactions?	Irreversible reactionsChemical reactions which proceed to completion inone direction only are known as irreversible reactions. Inirreversible reactions reactants are completely convertedinto products in a certain interval of time. In these reactionsproducts do not form reactants again.Examples1. $CaCO_3 \rightarrow CaO + CO_2$ 2. $CaO + H_2O \rightarrow Ca(OH)_2$ 3. $NH_4HCO_3 + NaCl \rightarrow NaHCO_3 + NH_4Cl$		
		Reversible reactionsChemical reactions which proceed in bothdirections forward and backward simultaneously areknown as reversible reactions. These reaction never go tocompletion but always continue in both directions.Examples1. $N_2 + 3H_2 = 2NH_3$ 2. $H_2 + I_2 = 2HI$ 3. $2SO_2 + O_2 = 2SO_3$		
44.	What is Chemical Equilibrium, explain with graph?	CHEMICAL EQUILIBRIUMReversible reactions proceed in both directionssimultaneously. In a reversible reaction a state is achievedat which the rate of forward reaction becomes equal to therate of backward reaction. This state is referred to as'chemical equilibrium'.EXPLANATIONConsider a reversible reaction		
		Consider a reversible reaction A + B = C + D in which two reactants A and B are allowed to react together.		

 At initial stage the reaction proceeds in the forward direction only because no product is formed . As the reaction starts A and B reacts to form C and D, Now C and D react each other to reproduce A and B and the reaction now proceeds in both forward and backward directions but the rate of forward reaction and the rate of backward reaction are different. Finally a state is established at which the rate of backward reaction becomes equal to the rate of forward reaction. This state is called 'chemical equilibrium'. At equilibrium state, the reaction does not stop. Reactants form products and products again converted into reactants. This process is always continue but with the passage of time, there is no change in the concentration of reactants and products due to same rate of reaction. At this point, it apparently appears as the reaction has stopped because we don't see any change in the concentration of reactants and products with time. Since chemical equilibrium continues and never go to stop, therefore, chemical equilibrium is a dynamic equilibrium. <u>ACTIVE MASS</u> Concentration of a substance expressed in mole/dm³ or in molar unit is called ACTIVE MASS. Active mass in mole/dm³ is represented by a square bracket []. 	
Law Of Mass Action According to the law of mass action. "The rate at which a substance reacts is directly proportional to its active mass " Rate α [Reactant]	
	 direction only because no product is formed . As the reaction starts A and B reacts to form C and D, Now C and D react each other to reproduce A and B and the reaction now proceeds in both forward and backward directions but the rate of forward reaction and the rate of backward reaction are different. Finally a state is established at which the rate of backward reaction. This state is called 'chemical equilibrium'. At equilibrium state, the reaction does not stop. Reactants form products and products again converted into reactants. This process is always continue but with the passage of time, there is no change in the concentration of reactants and products with time. Since chemical equilibrium continues and never go to stop, therefore, chemical equilibrium is a dynamic equilibrium. ACTIVE MASS Concentration of a substance expressed in mole/dm³ or in molar unit is called ACTIVE MASS. Active mass in mole/dm³ is represented by a square bracket [].

		of the active masses of reactants.Consider a general reversible reaction $A + B = C + D$ According to the law of mass action: Rate of reactiona [A][B]Determination of equilibrium constant by using equilibrium law Consider a general reaction $aA + bB = C + dD$ According to the law of mass action Rate of forward reaction a [A][B]bRate of forward reaction a [A]a[B]bRate of forward reaction a [A]a[B]bRate of backward reaction a [C] c [D]dRate of backward reaction a [C] c [D]dWhereK _f = rate constant for forward reaction $a, b, c, d =$ number of molesAt equilibrium rate of forward reaction, thus, Rate of backward reaction = Rate of backward reaction K_{f} [A]a[B] ^b = K_{b} [C]^{c}[D]^{d}Kte of forward reaction = Rate of backward reaction K_{f} [A]a[B] ^b = K_{b} [C]^{c}[D]^{d}	
46.	Describe the applications of Equilibrium Constatnt (Kc)?	K _c = [C] ^c [D] ^d / [A] ^a [B] ^b This is the expression of equilibrium constant where c represents concentration. APPLICATION OF EQUILIBRIUM CONSTANT Knowledge of equilibrium constant for a given reaction is very helpful aid in laboratory analysis as well as in industry. Equilibrium constant of a reaction is used for two purposes: • Value of Kc is used to predict the direction of the reaction. • Value of Kc is also used to predict the extent to which a reaction occurs. To predict the direction of reaction: The value of K _c is helpful in determining the direction in which a reaction will shift in order to achieve the	
		equilibrium. Consider a reaction Reactants Products First we determined the ratio of initial concentrations of reactants and products.	

There are three possible values of this ratio when it is compared with the value of Kc.

• When ratio=K_c

According to the law of mass action, there is no shifting of reaction and there will be no change in the concentration of reactants and products and the system is already at equilibrium.

• When ratio> K_c

In this condition the reaction will shift in the backward direction to achieve equilibrium state. At equilibrium quantity of product will decrease and the quantity of reactants will increase.

• When ratio<K_c

In this condition the reaction will shift in forward direction to achieve equilibrium state. At equilibrium quantity of product will increase and the quantity of reactants will decrease.

To predict the extent of a reaction :

From the magnitude of equilibrium constant, we can predict not only the direction of a reaction but also the extent to which a reaction proceeds.

There may be three values of equilibrium constant:

- A very high value of equilibrium constant
- A very small value of equilibrium constant
- A moderate value of equilibrium constant

1)When the value of equilibrium constant is very high:

A very high value of equilibrium constant indicates that the forward is almost complete and in other words we can say that the reactants are very unstable and they react spontaneously.

For example

The equilibrium constant for the reaction $2O_3 \implies 3O_2$ is very large i.e. 1 x 10^{55} .

This indicates that the forward is almost complete and ozone (O_3) is very unstable.

2)When the value of equilibrium constant is very small:

A very small value of equilibrium constant indicates that there is very little tendency for the reaction to occur in the forward direction and in other words we can say that the reactants are very stable.

For example

The equilibrium constant for the reaction $2HF \implies H_2$ + F_2 is very small i.e. 1 x 10^{-13} .

This indicates that the forward occurs with negligible speed and hydrogen fluoride (HF) is very stable.

19.	State LE – CHATELIER's PRINCIPLE, how a stress can be applied	LE-CHATELIER'S PRINCIPLE STATEMENT: If a stress or constraint is applied to an equilibrium system, the equilibrium will shift in such a	
40		3.IfK _p < K _c In this case reaction occur with the decrease in volume. For example: $2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$ In this example volumes of products are less than the volumes reactants.	
		2. If $K_p > K_c$ In this case reaction occur with the increase in volume. For example: $2NH_3 \implies N_2 + 3H_2$ In this example volumes of products are greater than the volumes reactants.	
		From above relation we conclude three results as follows. 1. If $K_p=K_c$ In this case there is no change in volume For example: $H_2 + I_2 = 2HI$ In this example volumes of products are equal to the volumes reactants.	
	between K _p AND K _c	We know that Kp and K _c are related to each other as: $\mathbf{K}_{p} = \mathbf{K}_{c} [\mathbf{RT}]^{\Delta n}$	
48.	Describe relation	RELATION BETWEEN Kp AND Kc	
		For the reaction K_p is $K_p = [P_C]^c [P_D]^d / [P_A]^a [P_B]^b$ Where $[P]$ = partial pressure of gas	
		Consider a general reversible reaction : $aA(g) + b B(g) \rightleftharpoons c C(g) + d D(g)$ For the reaction K is	
		of gases in a gaseous chemical equilibrium is denoted by K_p "	
47.	Define K _P ?	For gaseous equilibrium systems we can use partial pressure of gases instead of concentration. Therefore, "Equilibrium constant determined by using partial pressure	
		For example The equilibrium constant for the reaction $N_2 + 3H_2$ $= 2NH_3$ is 10, which is a moderate value.	
		attained after certain period of time.	
		When the value of equilibrium constant is neither very high nor very small, we conclude that the reaction occurs both in forward and backward direction and equilibrium will be	
		<u>3)When the value of equilibrium constant moderate:</u> When the value of equilibrium constant is neither very high	

on a reaction in equilibrium?	direction so that the effect of stress is cancelled or minimized.In other words:If a system at equilibrium is disturbed by some change, the system will shift in a direction to minimize or undo the effect change.
	MEANING OF STRESS: Stress on equilibrium is the change in concentration or pressure or temperature. If any one of these is changed at equilibrium, the equilibrium system will disturb. In the coming lines we will discuss the effect of change in the following factors on equilibrium: The effect of change in concentration The effect of change in pressure The effect of change in temperature The effect of catalyst

S#	CRQ	ANSWER	CL	DL
CHAPTER 07				
50.	Write a note on hydrolysis?	HYDROLYSIS		
		The reaction of cations or anion or both with water in which pH of water is changed, is known as HYDROLYSIS.		
		OR		
		Reaction of a substance with water in which pH of water is changed, is known as HYDROLYSIS.		
		EXPLANATION Example #1		
		When ammonium chloride is treated with water following reaction takes place $NH_4^+Cl^- + H^+OH^- \rightarrow HCl + NH_4OH$		
		For latest information, free computer courses and high impact notes visit www.citycollegiate.com In this example products are HCl which is strong acid and NH ₄ OH which is a weak base. Due to this reason, pH of solution will change towards acidic nature.		
		Example #2 When sodium carbonate is treated with water following reaction takes place $Na_2CO_3 + 2H_2O \rightarrow 2NaOH + H_2CO_3$		
		In this example products are NaOH which is strong base and H_2CO_3 (Carbonic acid) which is a weak acid. Due to this reason pH of solution will change towards basic		

		nature.
		Example #3 When NaCl is dissolved in water hydrolysis does not take place because by the addition of NaCl in water, pH of water does not affected. Because of the formation of strong acid and base i.eHCl&NaOH NaCl + H ₂ O \rightarrow HCl + NaOH
51.	Write a note on hydration?	Hydration & Hydrates Hydration: When an ionic compound is dissolved in water it splits into positive and negative ions. These ions are surrounded by water molecules. The phenomenon in which water molecules surround a positive or negative ion is called 'HYDRATION'. Hydration occurs either by the interaction of lone pairs of
		electrons in water with a cation or by hydrogen bonding with anions. <u>Hydrates</u> Many compounds have crystallized water molecules additional to that required for a simple stoichiometry. Water can be bonded to cations by coordinate bonds from oxygen or to anions by hydrogen bonds. These compounds are generally termed as 'HYDRATES'.
		$\begin{array}{c} \underline{EXAMPLES} \\ 1 CuSO_4 \bullet \\ 5H_2O \\ 2 Na_2CO_3 \\ \bullet 10 H_2O \\ 3 ZnSO_4 \bullet \\ 7 H_2O \\ 4 BaCl_2 \bullet \\ 2 H_2O \end{array} \begin{array}{c} H \\ H $
		5 FeSO4• Hydrated Na ⁺ ion Hydrated K ⁺ ion 7 H ₂ O 6 MgCl ₂ •6 H ₂ O 7 K ₂ SO ₄ .Al ₂ (SO ₄) ₃ •24 H ₂ O (Potash Alum) 8 FeSO ₄ .(NH ₄)2SO ₄ .6 H ₂ O (Mohr's Salt)
		 <u>Characteristics Of Hydration</u> In the process of hydration: Water molecules as a whole are linked with crystal lattice. No HO bond of water is broken. New bonds are formed between water molecules and cation and anions. It is an exothermic process.
		 It is an exothermic process. In this process no new compounds are formed. The ability of an ion to hydrate depends upon two factors:

	1. Magnitude of charge on the ion. 2. The size of ion. Greater is the ionic charge greater is the ability of ion to make hydrate. Smaller is the ionic size greater is the ability of ion to make hydrate. Effect of heat on hydrates: Many hydrates decompose on heating and loose their water of crystallization and become anhydrous CuSO ₄ .5H ₂ O \rightarrow CuSO ₄ + 5H ₂ O
ory of ionization?	 Arrhenius Theory Of Ionization Arrhenius theory of ionization consists of the following postulates. > The substance called electrolytes are believed to contain electrically charged particles called ions. These charges are positive for H+ ion or ions derived from metals and negative for the ions derived from non-metals. Number of electrical charges carried by an ion is equal to the valency of corresponding atom. > Molecules of electrolytes (acids, bases and salts) dissociate into oppositely charged ions on dissolution in water, e.g. NaCl → Na⁺ + Cl⁻ HCl → H⁺ + Cl⁻ HCl → H⁺ + Cl⁻ NaOH → Na⁺ + OH⁻ > The number of positive and negative charges on the ions must be equal so that the solution as a whole remains neutral. > In solution, the ions are in a state of disorderly or random motion. Upon colliding they may combine to give unionized molecules. Thus ionization is a reversible process in which the solution contains ions of electrolyte together with unionized molecules. H₂SO₄(aq) → 2H⁺(aq) + SO₄⁻²(aq) > The extent of ionization or the degree of ionization depends upon the nature of electrolyte.Strong electrolytes such as Acetic acid (CH₃COOH) ionize only slightly > When electric current is passed through an electrolytic solution, charges move towards their respective electrodes, i.e. cations towards anode and anions towards ended and anions towards anode and anions towards ended anions towards ended and anions towards ended and anions towa
	 ion is equal to the valency of corresponding atom. Molecules of electrolytes (acids, bases and salts) dissociate into oppositely charged ions on dissolution in water, e.g. NaCl — Na⁺ +Cl⁻ HCl — H⁺ +Cl⁻ HCl — H⁺ +Cl⁻ MaOH — Na⁺ + OH⁻ The number of positive and negative charges on the ions must be equal so that the solution as a whole remains neutral. In solution, the ions are in a state of disorderly or random motion. Upon colliding they may combine to give unionized molecules. Thus ionization is a reversible process in which the solution contains ions of electrolyte together with unionized molecules. H₂SO₄(aq) — 2H⁺(aq) + SO₄⁻²(aq) The extent of ionization or the degree of ionization depends upon the nature of electrolyte.Strong electrolytes such as HCl etc. ionize completely in water. Weak electrolytes such as acetic acid (CH₃COOH) ionize only slightly When electric current is passed through an electrolytic solution, charges move towards their

		temperature ➤ The electrical conductivity depends upon : The number of ions present in the solution and Speed of ions
53.	Balancing of ionic equation in acidic and basic medium?	EXAMPLE -01 – Balancing Redox Equations for Reactions Run in Acidic Conditions:
	and basic incurum.	$Cr_2O7^{2-}(aq) + HNO_2(aq) \rightarrow Cr^{3+}(aq) + NO_3^{-}(aq)$ (acidic)
		Step 1: Write the skeletons of the oxidation and reduction half-reactions.
		$Cr_2O_7^{2-} \rightarrow Cr^{3+}$ (Reduction half) HNO ₂ $\rightarrow NO_3^-$ (Oxidation half)
		Step 2: Balance all elements other than H and O.
		$\begin{array}{rcl} Cr_2O_7^{2-} & \rightarrow & 2Cr^{3+} \\ HNO_2 & \rightarrow & NO_3^{-} \end{array}$
		Step 3: Balance the oxygen & hydrogen atoms
		$\begin{array}{rcl} Cr_2O_7^{2-} &+ 14H^+ &\rightarrow & 2Cr^{3+}+ & 7H_2O \\ HNO_2 &+ H_2O &\rightarrow & NO_3^-+ & 3H^+ \end{array}$
		Step 4 Balance the charge by adding electrons, e- to deficient site.
		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
		Step 5 Equalize no. of electrons in both equation and add them.
		$\begin{array}{rcr} Cr_2O_7^{2-}+ & 14H^+ + 6e^- \rightarrow & 2Cr^{3+} + & 7H_2O \\ 3(HNO_2+ & H_2O \rightarrow & NO_3^- + & 3H^+ + & 2e^-) \\ OB \end{array}$
		OR $Cr_2O_7^{2^-}+ 14H^++6e^- \rightarrow 2Cr^{3+} + 7H_2O$ $3HNO_2+ 3H_2O \rightarrow 3NO_3^- + 9H^+ + 6e^-$
		$Cr_{2}O7^{2-} + 3HNO_{2} + 5H^{+} \rightarrow 2Cr^{3+} + 3NO_{3}^{-} + 4H_{2}O$
		EXAMPLE -02 – Balancing Redox Equations for Reactions Run in Basic Conditions:
		$MnO_4^- + CN^- \rightarrow MnO_2 + CNO^-$ (in base)
		Step 1: Write the skeletons of the oxidation and
		reduction half-reactions. $MnO_4^- \rightarrow MnO_2$ $CN^- \rightarrow CNO^-$

		Step 2: Balance all elements other than H and O. $MnO_4^- \rightarrow MnO_2$ $CN^- \rightarrow CNO^-$
		Step 3: Balance the oxygen & hydrogen atoms $MnO_4^- + 2 H_2O \rightarrow MnO_2 + 4 OH^-$ $CN^- + 2 OH^- \rightarrow CNO^- + H_2O$
		Step 4 Balance the charge by adding electrons, e- to deficient site. $MnO_4^- + 2 H_2O + 3e^- \rightarrow MnO_2 + 4 OH^-$ $2 OH^- + CN^- \rightarrow CNO^- + H_2O + 2 e^-$
		Step 5 Equalize no. of electrons in both equation and add them. $2 \times (MnO_4^- + 2 H_2O + 3e^- \rightarrow MnO_2 + 4 OH^-)$ $3 \times (2 OH^- + CN^- \rightarrow CNO^- + H_2O + 2 e^-)$ The resulting half reactions are:
		$2MnO_4^- + 4 H_2O + 6e^- \rightarrow 2MnO_2 + 8 OH^-$ 6 OH ⁻ + 3CN ⁻ \rightarrow 3CNO ⁻ + 3H ₂ O + 6 e ⁻
		$2 \operatorname{MnO4^{-}} + 3 \operatorname{CN^{-}} + \operatorname{H2O} \rightarrow 2 \operatorname{MnO2} + 2 \operatorname{OH^{-}} + 3 \operatorname{CNO^{-}}$
54.	What are buffers? write their applications?	Buffer solution A solution which resists any change of pH when a small amount of a strong acid or a strong base is added to it, is called a buffer solution or simply as a buffer.
		is called a buffer solution or simply as a buffer. They are the solution whose pH value does not change appreciably upon the addition of small amounts of a strong acid, base and/or water from outside.
		acid, base and/or water from outside.
		Thus, buffers have reserve acidity and reserve alkalinity.
		Thus, buffers have reserve acidity and reserve alkalinity. <u>Preparation</u> Buffer solutions usually consist of a mixture of a weak acid and its salt with a strong base e.g., CH ₃ COOH and CH ₃ COONa, or that of a weak base and its salt with a strong acid e.g., NH ₄ OH and NH ₄ Cl. The solution of any salt of a weak acid and a weak base <u>Types of Buffers</u>
		Thus, buffers have reserve acidity and reserve alkalinity. <u>Preparation</u> Buffer solutions usually consist of a mixture of a weak acid and its salt with a strong base e.g., CH ₃ COOH and CH ₃ COONa, or that of a weak base and its salt with a strong acid e.g., NH ₄ OH and NH ₄ Cl. The solution of any salt of a weak acid and a weak base
		Thus, buffers have reserve acidity and reserve alkalinity. Preparation Buffer solutions usually consist of a mixture of a weak acid and its salt with a strong base e.g., CH ₃ COOH and CH ₃ COONa, or that of a weak base and its salt with a strong acid e.g., NH ₄ OH and NH ₄ Cl. The solution of any salt of a weak acid and a weak base Types of Buffers There are two types of buffers, acid buffer and basic buffer. Acid buffer A buffer solution containing a large amounts of a weak

weak base and its salt with a strong acid, is termed as a basic buffer. Such buffers have pH on the alkaline side i.e., pH is higher than 7 at 298 K.
Applications of Buffers
Buffers find extensive applications in a variety of fields.
1-In biochemical systems
pH plays a very significant role in biochemical reactions. For example, the blood in our bodies is buffered at a pH value of 7.36-7.42 due to bicarbonate - carbonic acid buffer. A mere change of 0.2 pH units can cause death. Certain enzymes get activated only at certain definite pH values.
2-Agriculture
The pH of the soil is very important for having proper crop yield. The soils get buffered due to the presence of salts such as carbonates, bicarbonates, phosphates and organic acids. The choice of fertilizers depends upon pH of the soil.
3-Industry
Practically all industries use buffers in one process or the other. Major industries, which employ buffers are paper, dyes, ink, paints and drugs industries.
4-Analytical chemistry
Buffers find extensive use in analytical chemistry, viz., both in qualitative and quantitative analysis. For example, qualitative analysis of Group III and Group IV is done in solutions buffered by $NH_4Cl + NH_4OH$. Buffers are used in the removal of interfering radicals such as phosphate, oxalate, borate and fluoride etc. The control of pH is very important in the field of food preservation.

@copyright ZUEB